Manifold regularization and semi-supervised learning: some theoretical analyses

نویسنده

  • Partha Niyogi
چکیده

Manifold regularization (Belkin et al., 2006) is a geometrically motivated framework for machine learning within which several semi-supervised algorithms have been constructed. Here we try to provide some theoretical understanding of this approach. Our main result is to expose the natural structure of a class of problems on which manifold regularization methods are helpful. We show that for such problems, no supervised learner can learn effectively. On the other hand, a manifold based learner (that knows the manifold or “learns” it from unlabeled examples) can learn with relatively few labeled examples. Our analysis follows a minimax style with an emphasis on finite sample results (in terms of n: the number of labeled examples). These results allow us to properly interpret manifold regularization and related spectral and geometric algorithms in terms of their potential use in semi-supervised learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ReLISH: Reliable Label Inference via Smoothness Hypothesis

The smoothness hypothesis is critical for graph-based semi-supervised learning. This paper defines local smoothness, based on which a new algorithm, Reliable Label Inference via Smoothness Hypothesis (ReLISH), is proposed. ReLISH has produced smoother labels than some existing methods for both labeled and unlabeled examples. Theoretical analyses demonstrate good stability and generalizability o...

متن کامل

Online Manifold Regularization: A New Learning Setting and Empirical Study

We consider a novel “online semi-supervised learning” setting where (mostly unlabeled) data arrives sequentially in large volume, and it is impractical to store it all before learning. We propose an online manifold regularization algorithm. It differs from standard online learning in that it learns even when the input point is unlabeled. Our algorithm is based on convex programming in kernel sp...

متن کامل

Manifold Regularization: A Geometric Framework for Learning from Examples

We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph learning algorithms and standard methods including Support Vector Machines and Regularized Least Squares can...

متن کامل

Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples

We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph learning algorithms and standard methods including Support Vector Machines and Regularized Least Squares can...

متن کامل

Semi-supervised Regression with Order Preferences

Following a discussion on the general form of regularization for semi-supervised learning, we propose a semi-supervised regression algorithm. It is based on the assumption that we have certain order preferences on unlabeled data (e.g., point x1 has a larger target value than x2). Semi-supervised learning consists of enforcing the order preferences as regularization in a risk minimization framew...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013